Skip to content


Maureen Donelly

Pages 245 - 249

We may describe a given situation at different levels of precision. For example, the starting time of an event may be rounded to the nearest hour, minute, or second. A building’s location may be listed as a city or as a street address. A biological process may be described in terms of organ processes or in terms of the underlying cellular processes. A building may be classified as a public-use facility or, more specifically, as a hospital.

1Department of Philosophy, University at Buffalo

1 Bettini, C.; Jajodia, S.; Wang, S., (2000), Time Granularities in Databases, Data Mining, and Temporal Reasoning, Berlin: Springer.

2 Bittner, T., (2002), “Approximate Qualitative Temporal Reasoning”, Annals of Mathematics and Artificial Intelligence 35: 39-80.

3 Bittner, T., (2004), “A Mereological Theory of Frames of Reference”, International Journal of Artificial Intelligence Tools 13: 171-198.

4 Demri, S.; Orlowska, E., (2002) Incomplete Information: Structure, Inference, Complexity, Berlin: Springer.

5 Donnelly, M., (2001) “Introducing Granularity-Dependent Quantitative Distance and Diameter Measures in Common-Sense Reasoning Contexts”, in Welty, C.; Smith, B. (eds.) Formal Ontology in Information Systems. Collected Papers from the 2nd International Conference, New York: ACM Press, 321-332.

6 Duntsch, I.; Orlowska, E.; Wang, H., (2001), “Algebras of Approximating Regions”, Fundamenta Informaticae 46: 71-82.

7 Euzenat, J.; Montanari, A., (2005), “Time Granularity” in Fisher, M.; Gabbay, D.; Vila, L. (eds.), Handbook of Temporal Reasoning in Artificial Intelligence, Amsterdam: Elsevier, 59-118.

8 Hobbs, J., (1985), “Granularity” in Proceedings, Ninth International Joint Conference on Artificial Intelligence, 432-435.

9 Galton, A., (2003), “Granularity-Sensitive Spatial Attributes”, Spatial Cognition and Computation 3: 97-118.

10 Pawlak, Z., (1991), Rough Sets: Theoretical Aspects of Reasoning about Data, Dordrecht: Kluwer.

11 Pianesi, F.; Varzi, A., (1996) “Refining Temporal Reference in Event Structures”, Notre Dame Journal of Formal Logic 37: 71-83.

12 Polkowski, L.; Skowron, A., (1996), “Rough Mereology: A New Paradigm for Approximate Reasoning”, International Journal of Approximate Reasoning 15: 333-365.

13 Puppo, E.; Dettori, G., (1995), “Towards a Formal Model for Multiresolution Spatial Maps” in Egenhofer, M.;

14 Herring, J. (eds.), Advances in Spatial Databases: Lecture Notes in Computer Science 951, Berlin: Springer, 152-169.

15 Schmidtke, H., (2003), “A Geometry of Places: Representing Extension and Extended Objects” in Kuhn, W.; Worboys, M.; Timpf, S. (eds.), Spatial Information Theory:

16 Foundations of Geographic Information Science, Berlin: Springer, 235-252.

17 Schmidtke, H., (2005), “Granularity as a Parameter of Context” in Dey, A.; Kokinov, B.; Leake, D.; Turner, R. (eds.), Modeling and Using Context, 450-463.

18 Smith, B.; Brogaard, B., (2002), “Quantum Mereotopology”, Annals of Mathematics and Artificial Intelligence 35: 153-175.

19 Stell, J., (1999), “Granulation for Graphs” in Freksa, C.; Mark, D. (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Berlin: Springer, 417-432.

20 Stell, J., (2003), “Qualitative Extents for Spatio-Temporal Granularity”, Spatial Cognition and Computation 3: 119-136.

21 Worboys, M., (1998), “Imprecision in Finite Resolution Spatial Data”, Geoinformatica 2: 257-280.


Export Citation