Skip to content

Boolean Algebras

Heinrich Herre

Pages 114 - 119

Partial orderings and mereological Systems. The present paper focuses on the inter-relation between mereological systems and Boolean algebras and the investigation of model-theoretic and algorithmic properties of the corresponding theories.

1Institute for Informatics, University of Leipzig

1 Chang, C. C., (1977), Model Theory, Amsterdam: North-Holland Publishing Company.

2 Davey, B. A., (1990), Introduction to Lattices and Order, Cambridge: Cambridge University Press.

3 Ershov, Y. L., (1964), “Rasreshimost elementarnoi teorii distributivnich struktur s otnositelnimi dopolneniami i teprii filtrov”, Algebra i Logika: 17-38.

4 Ershov, Y., (1980), Problemi Razreshimost i Konstruktivnije Modeli, Moskau: Nauka.

5 Grätzer, G., (1980), General Latticce Theory, Berlin: Akademie Verlag.

6 Herre, H., (2010), “The Ontology of Mereological Systems: A Logical Approach”, in Poli, R. (ed.) Theory and Application of Ontology, vol. 2. Berlin: Springer.

7 Hodges, W., (1993), Introduction to Model Theory, Cambridge: Cambriddge University Press.

8 Monk, J. D., (1989), Handbook of Boolean Algebras, Amsterdam: North-Holland.

9 Simons, P., (1987), Parts. A Study in Ontology, Oxford: Clarendon Press.

10 Tarski, A., (1949), “Arithmetical Classes and Types of Boolean Algebras”, Bull. Math. Soc. 55: 63-64.


Export Citation